ISO 3297:2007 Certified

Vol. 3. Issue 11. November 2016

A Review: GFRP Plate Effect of Layup Angles on Vibration

Rahul Gangurde¹, Dr. E. R. Deore²

PG Student, Mechanical Department, SSVPSCOE, Dhule, Maharashtra, India¹ H.O.D, Mechanical Department, SSVPSCOE, Dhule, Maharashtra, India²

Abstract: The focus of the review paper is effect of lay-up angles on the vibrational frequencies of the GFRP plates. Lightweight materials and design have always been an important topic in product design across several industries. Composite material gives chances to designers and engineers to increase material efficiency, therefore resulting in cost reduction and better utilization of resources. Composites materials applications are wide in aerospace industries, automobile sector; manufacturing industries etc. study involves extensive experimental works to investigate the free vibration of woven E-fiber Glass/Epoxy composite plates in fix-free boundary conditions. The specimens of woven Eglass fiber and epoxy matrix composite plates are manufactured by the hand-lay-up technique which is most suitable and efficient manufacturing technique for composite manufacturing. Lay-up angles selected for the study are (0-90), (60- -30) and (45- -45) and two different aspect ratios plates 1 and 1.5 are selected for study. Manufacturing, experimental investigation will be performed on the samples and FEA analysis will be performed on the models of the

Keywords: GFRP, Composite Material, Weight Reduction, Vibration Frequencies.

1. INTRODUCTION

Lightweight materials and design have always been an top and bottom of the mould plate to get good surface important topic in product design across several industries. The concept has been most important in aviation but also mats or chopped strand mats are cut as per the mould size in industries where large rotating parts (e.g., rotor blades of wind turbines) are key elements of product design and in automotive, where driving dynamics are a major consideration. Global trends toward CO2 reduction and resource efficiency have significantly increased the importance of this topic over the last years.

Composite material has turned up as one of the major replacement for the conventional materials for weight reduction. Composite material has higher strength to weight ratio which results in to replacement of the conventional components with weight reduction and higher modal frequencies of the components.

A composite is a structural material that consists of two or more combined constituents that are combined at a macroscopic level and are not soluble in each other. One constituent is called the reinforcing phase and the one in which it is embedded is called the matrix. The reinforcing phase material may be in the form of fibers, particles, or flakes. The matrix phase materials are generally continuous. Examples of composite systems include concrete reinforced with steel and epoxy reinforced with graphite fibers, etc.

Hand Lay-up method will be used for the manufacturing of the composite plates. This technique is the simplest method of composite processing. The infrastructural requirement for this method is also minimal. The processing steps are quite simple. First of all, a release gel The purpose of the literature review is to understand the is sprayed on the mould surface to avoid the sticking of work done and understand composite material layers polymer to the surface. Thin plastic sheets are used at the

finish of the product. Reinforcement in the form of woven and placed at the surface of mould after Perspex sheet. Then thermosetting polymer in liquid form is mixed thoroughly in suitable proportion with a prescribed hardener (curing agent) and poured onto the surface of mat already placed in the mould. Process is repeated for all the layers and then curing time will be given to the moulded material while pressure is applied on the mould. Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration can be desirable in few cases, however, vibration is undesirable in the most, wasting energy and creating unwanted sound. There are different types of vibration which includes Free, Forced on the basis of nature of force and damped, un-damped on the basis of use of damper. Careful designs usually minimize unwanted vibrations.

Most of the times simple systems can be represented using spring, mass damper system as shown in the figure below. Vibration equation is formulated and can be solved to find out natural frequencies of the system.

Ordinary differential equation that represents the vibration is given by

$$m.\frac{d^2x}{dt^2} + c.\frac{dx}{dt} + k.x = f(t)$$

2. LITERATURE REVIEW

effect on the vibration frequencies of plate. Swapnil

ISO 3297:2007 Certified

Vol. 3. Issue 11. November 2016

Sanjay Chavan presented his study on "Study on Vibration researcher has said that vibration and composite material Analysis of Composite Plate." This paper represents the are two main growing research topics these days. Almost review on vibration analysis of composite plates. The all the structural components subjected to dynamic author says that vibration and composite material are two loading in their working life and vibration affects the main growing research topics now-a-days. Almost all the working life of the structure so it is very important in structural components subjected to dynamic loading in their working life and vibration affects working life of the structure so it is very important in designing a structure to know in advance its response and to take necessary steps to control the structural vibration and its amplitude. Composite material gives opportunity to designer and engineer to increase material efficiency, resulting in cost reduction and better utilization of resources. Composites materials applications are wide in aerospace industries, automobile sector, manufacturing industries etc. study involves extensive experimental work to investigate the free vibration of woven fiber glass/epoxy composites plates in free-free boundary condition and the author was interested to do research in fixed-free boundary condition of composite plates. Vibration of plates depends greatly on its thickness, aspect ratio, boundary condition and fiber orientation. In this paper the author studies different mode frequency for free vibration according to change in aspect ratio, thickness and fiber orientation. The specimens of woven glass fiber and epoxy matrix composite plates were manufactured by the hand-layup techniques. Elastic parameters are determined experimentally by tensile testing of specimens. An experimental investigation is carried out using modal analysis technique to obtain the natural frequencies by using FFT analyzer. Also another analysis runs on ANSYS to validate the results. This study provides valuable information for researchers, engineers composite material industries in design applications.[1] Itishree Mishra & Shishir Kumar Sahu submitted their work on "An Experimental Approach to Free Vibration Response of Woven Fiber Composite Plates Kavitha and P. Anusha submitted their work on "Free under Free-Free Boundary Condition." This present study Vibration Of Thick Rectangular Debonded Metallic involves extensive experimental works to investigate the Plates: Analytical And Experimental Approach" In this free vibration of woven fiber Glass/Epoxy composite investigation, free vibration analysis of thick isotropic plates in free-free boundary conditions. The specimens of materials of debonded metallic plates under various woven glass fiber and epoxy matrix composite plates are boundary conditions was found using finite element manufactured by the hand-layup technique. Elastic method. In addition experiments were conducted on thick parameters of the plate are also determined experimentally debonded metallic plates to validate FEM with by tensile testing of specimens using Instron 1195. An experimental modal analysis also. The finite element experimental investigation is carried out using modal models (FEM) which use the elasticity theory for the analysis technique with Fast Fourier Transform Analyzer, PULSE lab to obtain the Frequency Response of the laminate. accelerometer Functions.

Also, this experiment was used to validate the results obtained from the FEM numerical analysis based on a first and aluminium was presented.[4] G. V. Mahajan and Prof. order shear deformation theory. The effects of different geometrical parameters including number of layers, aspect Material: A Review over Current Development and ratio, and fiber orientation of woven fiber composite plates Automotive Application." In this paper, the authors have are studied in free-free boundary conditions in details. This said that the importance of materials in modern world can study provides valuable information for researchers and be realized from the fact that much of the research is being engineers in design applications.[2] S. S. Chavan and M. done to apply new materials to different components. M. Joshi presented their research on "Study on Vibration However it is natural for a design engineer to rely on Analysis of Composite Plate". In this research the trusted and tested materials, but now the world is

designing a structure to know in advance its response and to take necessary steps to control the structural vibration and its amplitude. Composite material gives chances to designers and engineers to increase material efficiency, therefore resulting in cost reduction and better utilization of resources. Composites materials applications are wide in aerospace industries, automobile sector, manufacturing industries etc. This study involves extensive experimental works to investigate the free vibration of woven E-fiber Glass/Epoxy composite plates in fix-free boundary conditions. The specimens of woven E-glass fiber and epoxy matrix composite plates are manufactured by the hand-lay-up technique which is most suitable and efficient manufacturing technique for composite manufacturing. Elastic properties of the plate are also determined experimentally by tensile testing of specimens using computerized universal testing machine TUE-C-400. ASTM standard was used to test the material. An experimental investigation was carried out using modal analysis technique with VA4Pro FFT Analyzer, impact hammer and contact accelerometer obtains the Frequency Response Functions. Also, this experiment was used to validate the results obtained from the ANSYS 15.0 and theoretical calculations based on governing equation of vibration. The effects of different geometrical parameters including number of layers, aspect ratio of woven E-glass fiber composite plates are studied in fix-free boundary conditions in details. This study provided valuable information for researchers and engineers in design applications.[3] Dr. K. Srividya, M. Nagaswapnasri, E. determination of stiffness matrices were modeled in shop, impact hammer and contact ANSYS software to evaluate the first natural frequencies

> The variation of natural frequencies with respect to various debonded isotropic materials like stainless steel V. S. Aher presented their research on "Composite

ISO 3297:2007 Certified

Vol. 3. Issue 11. November 2016

changing. Today composite materials have changed all the reinforced epoxy matrix composite is valid with the material engineering. The evolution of composite materials has given an opportunity to various designers to use new and better materials resulting in cost reduction, increase in efficiency and better utilization of available resources. Composite materials are finding their applications in aerospace industry, automobile sector, manufacturing industries etc. This paper presents design method and vibrational analysis of composite propeller shafts. In this paper, the aim is to replace a metallic drive shaft by a twopiece composite drive shaft. Designing of a composite drive shaft is divided in two main sections: design of the composite shaft and design of couplings. In composite shaft design some parameters such as critical speed, static torque and adhesive joints are studied; the behavior of materials is considered nonlinear isotropic for adhesive, linear isotropic for metal and orthotropic for composite shaft. Along with the design all the analyses are performed using finite element software (ANSYS). The results show significant points about optimum design of composite drive shafts.[5] R. Rikards, A. Chate and O. Ozolinsh presented their work on "Analysis for Buckling and Vibrations of Composite Stiffened Shells and Plates." This paper deals with development of triangular finite element for buckling and vibration analysis of laminated composite stiffened shells. For the laminated shell, an equivalent layer shell theory is employed. The first-order shear deformation theory including extension of the normal line is used. In order to take into account a non-homogeneous distribution of the transverse shear stresses a correction of transverse shear stiffness is employed. Based on the equivalent layer theory with six degrees of freedom (three displacements and three rotations), a finite element that ensures C⁰ continuity of the displacement and rotation fields across inter-element boundaries has been developed.

Numerical examples are presented to show the accuracy and convergence characteristics of the element. Results of vibration and buckling analysis of stiffened plates and shells are discussed.[6] C. Srinivasan, S. Vijayakumar, A. Kalaiyarasan, K. Pasupathi and S. Sasidharan presented their work on "Experimental Investigation on Vibration Characteristics of Jute Fiber Reinforced Composite Material" This work presents the vibrational characteristics of composite material that is formed by a jute fiber reinforced epoxy matrix composite.

An experimental modal analysis was conducted on the composite material with cantilever beam structure to get the natural frequency, damping and mode shape. The experimental work is disbursed completely different for various layers of configuration by exciting the composite algorithm of Wittrick and Williams to carry out free beam with different excitation frequencies by software model read package. The obtained mode shape reveals the methodology is verified through published literature, finite deformation pattern of the structure like its natural frequency. Additionally the finite element modeling and analysis was disbursed by using ANSYS workbench for finding the natural frequencies and mode shapes of the finite element model of jute fiber reinforced epoxy matrix Plates Using FEM." The vibrational analysis of laminated composite. Finally the finite part model of jute fiber composite plates is analysed using finite element method

obtained experimental results.[7]

Mutra Raja Sekhara Reddy, Bathini Sidda Reddy, Vanguru Nageswara Reddy and Surisetty Sreenivasulu submitted their research on "Prediction of Natural Frequency of Laminated Composite Plates Using Artificial Neural Networks." The paper is focused on the application of artificial neural networks (ANN) in predicting the natural frequency of laminated composite plates under clamped boundary condition. For training and testing of the ANN model, a number of finite element analyses have been carried out using D-optimal design in the design of experiments (DOE) by varying the fibre orientations, -45°, 0°, 45° and 90°. The composite plate is modeled using linear layered structural shell element. The natural frequencies were found by analyses which were done by finite element (FE) analysis software. The ANN model has been developed using multilayer perceptron (MLP) back propagation algorithm. The adequacy of the developed model is verified by coefficient of determination (R). It was found that the R2 (R: coefficient of determination) values are 1 and 0.998 for train and test data respectively. The results showed that, the training algorithm of back propagation was sufficient enough in predicting the natural frequency of laminated composite plates. To judge the ability and efficiency of the developed ANN model, absolute relative error has been used. The results predicted by ANN are in very good agreement with the finite element (FE) results. Consequently, the D-optimal design and ANN are shown to be effective in predicting the natural frequency of laminated composite plates.[8]A. Pagani, E. Carrera, J. R. Banerjee, P. H. Cabral, G. Caprio and A. Prado presented their paper on "Free Vibration Analysis of Composite Plates by Higher-Order 1D Dynamic Stiffness Elements And Experiments." In this paper a novel approach for free vibration analysis of composite plate-like structures was introduced. Refined beam theories were formulated by making use of the Carrera Unified Formulation (CUF). By exploiting the hierarchical characteristics of CUF, the differential equations of motions and the natural boundary conditions are written in a compact and concise form in terms of fundamental nuclei, whose formal mathematical expressions do not depend on the order of the theory N. After the closed form solution of the Nth order beam model is sought, a general procedure to derive the exact Dynamic Stiffness (DS) matrix is devised by relating the amplitudes of the harmonically varying loads to those of the responses. The global DS matrices of composite laminated plates are then used with reference to the vibration analyses. The accuracy of the proposed element solutions from the commercial code MSC/ NASTRAN and experimental tests.[9] Pushpendra K. Kushwaha and Jyoti Vimal submitted their work on "Study of Vibration Analysis of Laminated Composite

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

the effect of number of layers, thickness ratio of plate, different boundary conditions, different aspect ratio, and different angle of fibre orientation of laminated composite [5] plate. The analysis for rectangular plate is carried out for thickness (h/b= 0.001, 0.01, 0.05, 0.1, and 0.2) and different aspect ratios (a/b=1, 1.5, 2, and 2.5). The problem of free vibration analysis of composite square plates having (3, 5, 7, and 9) lamina layers (angle ply and cross ply) is also considered. The non-dimensional fundamental frequency of vibration is found to increase with increase of angle of fibre orientation and number of layers but nondimensional fundamental frequency decrease with increase in size ratio and thickness to width ratio. The natural frequencies and mode shapes are compared for different boundary condition. Comparisons are made with the result for thin and thick composite laminated plate.[10]

3. CONCLUSION

If we observe the literature survey above we can clearly see that the study of vibration analysis on the composite material is always been constrained to number of composite plies of different composite materials and aspect ratios of the plates used in composite. Though fibre orientation of the composite materials like GFRP and CFRP are very important parameters when effect on the vibrational frequencies is to be evaluated. So there is wide area of composite materials components vibration which is unexplored. With respect to above points we will bring forward above study -

- By Fabrication of different lay-up angles plates with different aspect ratios using hand lay-up method.
- By performing FFT analyser experimental testing to find out vibrational frequencies for the free vibration of the plates at fix-free boundary conditions
- By comparing vibrational frequencies of the composite plates with different lay –up angles like (0-90), (60-30) and (45- -45) using fix –free boundary condition for the plate.
- By studying the effect of angled ply on the vibration of plates with different aspect ratio by comparing the vibrations of different ply angles for both plates with aspect ratio 1 and 1.5.
- To create and simulate FEA model for layered composite plates using ANSYS and comparing experimental results to validate our analysis.

REFERENCES

- [1] Swapnil Sanjay Chavan "Study on Vibration Analysis of Composite Plate." International Conference on Multidisciplinary Research & Practice, VolumeI, 407-410, (2014)
- Itishree Mishra & Shishir Kumar Sahu submitted their work on "An Experimental Approach to Free Vibration Response of Woven Fiber Composite Plates under Free-Free Boundary Condition.' International Journal of Advanced Technology in Civil Engineering, 67-72, (2012)
- [3] S. S. Chavan and M. M. Joshi "Study on Vibration Analysis of Composite Plate", International Journal Of Advances In Production And Mechanical Engineering, 69-76, (2015)

- in this paper. Numerical results have been computed for [4] Dr. K. Srividya, M. Nagaswapnasri, E. Kavitha and P. Anusha, "Free Vibration Of Thick Rectangular Debonded Metallic Plates: Analytical And Experimental Approach", Journal of Advance Research in Science and Engineering, 246-257, (2016)
 - G. V. Mahajan and Prof. V. S. Aher "Composite Material: A Review over Current Development and Automotive Application." International Journal of Scientific and Research Publications, 2250-3153, (2012)
 - R. Rikards, A. Chate and O. Ozolinsh, "Analysis for Buckling and Vibrations of Composite Stiffened Shells and Plates", ELSEVIER, Composite Structure 51 (2001),361-370.
 - C. Srinivasan, S. Vijaya Kumar, A. Kalaiyarasan, K. Pasupathi and S. Sasidharan, "Experimental Investigation on Vibration Characteristics of Jute Fiber Reinforced Composite Material", International Journal for Scientific Research & Development, Vol4, 150-153, (2016)
 - Mutra Raja Sekhara Reddy, Bathini Sidda Reddy, Vanguru Nageswara Reddy and Surisetty Sreenivasulu, "Prediction of Natural Frequency of Laminated Composite Plates Using Artificial Neural Networks" Scientific Research, Engineering, 329-337, (2012).
 - Pagani, E. Carrera, J. R. Banerjee, P. H. Cabral, G. Caprio and A. Prado, "Free Vibration Analysis of Composite Plates by Higher-Order 1D Dynamic Stiffness Elements And Experiments" ELSEVIER, composite Structure 118 (2014),654-663.
 - [10] Pushpendra K. Kushwaha and Jyoti Vimal, "Study of Vibration Analysis of Laminated Composite Plates Using FEM "International Journal of Advance Mechanical Engineering, Volume4, (2014), pp. - 675-680